Finite Difference Schemes for the "Parabolic" Equation in a Variable Depth Environment with a Rigid Bottom Boundary Condition

نویسندگان

  • Georgios Akrivis
  • V. A. Dougalis
  • Georgios E. Zouraris
چکیده

We consider a linear, Schrödinger type p.d.e., the ‘Parabolic’ Equation of underwater acoustics, in a layer of water bounded below by a rigid bottom of variable topography. Using a change of depth variable technique we transform the problem into one with horizontal bottom, for which we establish an a priori H estimate and prove an optimal-order error bound in the maximum norm for a Crank-Nicolson type finite difference approximation of its solution. We also consider the same problem with an alternative rigid bottom boundary condition due to Abrahamsson and Kreiss, and prove again a priori H estimates and optimal order error bounds for a Crank-Nicolson scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Discretization of the ‘parabolic’ Equation in an Underwater Variable Bottom Environment

The standard ‘parabolic’ approximation to the Helmholtz equation is used in order to model long-range propagation of sound in the sea in the presence of cylindrical symmetry in a domain with a rigid bottom of variable topography. The rigid bottom is modeled by a homogeneous Neumann condition and a paraxial approximation thereof proposed by Abrahamsson and Kreiss. The resulting initial-boundary-...

متن کامل

Finite Difference Discretization with Variable Mesh of the Schrödinger Equation in a Variable Domain

Abstract. We consider a partial differential equation of Schrödinger type, known as the ‘parabolic’ approximation to the Helmholtz equation in the theory of sound propagation in an underwater, rangeand depth-dependent environment with a variable bottom. We solve an associated initialand boundary-value problem by a finite difference scheme of Crank-Nicolson type on a variable mesh. We prove that...

متن کامل

Finite Difference Methods for the Wide-angle ‘parabolic’ Equation

We consider a model initial and boundary value problem for the wide-angle ‘parabolic’ equation Lur = icu of underwater acoustics, where L is a second-order differential operator in the depth variable z with depthand range-dependent coefficients. We discretize the problem by the Crank–Nicolson finite difference scheme and also by the forward Euler method using nonuniform partitions both in depth...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics

In this paper we consider Galerkin-finite element methods that approximate the solutions of initial-boundary-value problems in one space dimension for parabolic and Schrödinger evolution equations with dynamical boundary conditions. Error estimates of optimal rates of convergence in L and H are proved for the accociated semidiscrete and fully discrete Crank-Nicolson-Galerkin approximations. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2001